optimize control and machine performance.

Control systems can vary from simple linear single input single output (SISO) systems to complex non-linear multi-input multi-output (MIMO) systems. While simple systems can easily be controlled by the application of PID controllers, nonlinear MIMO systems are much more complicated.


  • Reinforcement learning to enable control for complex, non-linear multi-input multi-output control systems
  • Squeeze out maximal performance by optimizing control settings with a reinforcement learning agent
  • Optimizing control without the availability of an accurate model

revolutionizing control systems with reinforcement learning.

Traditionally, a lot of effort is put into decoupling inputs and linearizing these nonlinear MIMO systems to make a well-functioning control system. However, reinforcement learning offers a different approach where the algorithm learns the optimal behavior by itself. The challenge is to get high performance in terms of stability and or reaction speed in these non-linear MIMO control systems.

maximize your machine's performance.

We can use reinforcement learning (RL) techniques to optimize your machine’s performance in two ways. First, use RL to model the entire nonlinear MIMO control system when the system is too complex and non-linearizable. Secondly, use RL to tune settings in the traditional control system to squeeze out the last bit of performance.


David Rijlaarsdam

+31 (0)88 - 115 20 00

contact us

starting from a concrete use-case is a success factor for applying AI.

products & services

explore what else we have to offer.

synthetic data

Generate near-infinite permutations of complex, domain-specific, 3D environments

Read More

time series analysis

Increase functionality by actionable knowledge extraction

Read More

machine vision

More robust machine vision applications

Read More

machine health monitoring

Optimize machine operation quality

Read More